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ABSTRACT

A Koblitz curve Ea is de�ned over �eld F2m . Let τ = (−1)1−a+
√
−7

2
where

a ∈ {0, 1} denotes the Frobenius endomorphism from the set E(F2m) to
itself. It can be used to improve the performance of computing scalar

multiplication on Koblitz Curves. In this paper, another version of for-

mula for τm = rm + smτ where rm and sm are integers is introduced.

Through this approach, we discover an alternative method to �nd the

number of points through the curve Ea.

Keywords: Koblitz curve, scalar multiplication, Frobenius endomor-

phism, elliptic curve cryptosystem, number of points.
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1. Introduction

Elliptic Curve Cryptography (ECC) was discovered by (Koblitz, 1987). El-
liptic curve based schemes have scalar multiplication (SM) as the dominant
operation on it. Let P and Q be the point on Koblitz Curve. SM is the
repeated addition of a point along the curve up to n times and denoted as
nP = P + P + · · · + P for some scalar n such that nP = Q. Frobenius endo-
morphism can be used to improve the performance of computing SM on Koblitz
curves. Koblitz curves are de�ned over F2 as follows:

Ea : y2 + xy = x3 + ax2 + 1

where a ∈ {0, 1} as suggested by (Koblitz, 1992). The Frobenius map τ :
Ea(F2m)→ Ea(F2m) for a point P = (x, y) on Ea(F2m) is de�ned by τ(x, y) =
(x2, y2), τ(∞) =∞ where∞ is the point at in�nity. It stands that (τ2 +2)P =
tτ(P ) for all P ∈ Ea(F2m) and the trace of Frobenius map is t = (−1)1−a.
The τ -NAF proposed by (Solinas, 2000) is one of the most e�cient algorithm
to compute SM on Koblitz curves.

To proceed the discussion of this paper, the following de�nitions that can
be found in (Ali et al., 2017), (Hankerson et al., 2006), (Hazewinkel, 1994),
(Koblitz, 1987), (Solinas, 1997), (Suberi et al., 2016), (Yunos et al., 2015a),
(Yunos et al., 2014b), (Yunos et al., 2015b) and Hadani and Yunos (2018) will
be applied.

De�nition 1.1. An element of the ring Z(τ) is de�ned as r+sτ where r, s ∈ Z.

De�nition 1.2. A τ -adic Non-Adjacent Form (TNAF) of nonzero n̄ of an

element of Z(τ) is de�ned as τNAF(n̄) =
∑l−1
i=0 ciτ

i where l is the length of the
expansion τNAF(n̄), ci ∈ {−1, 0, 1}, cl−1 6= 0 and cici+1 = 0.

De�nition 1.3. A Reduced τ -adic Non-Adjacent Form (RTNAF) of nonzero

n̄ of an element of Z(τ) is de�ned as RTNAF(n̄) =
∑l−1
i−0 ciτ

i in modulo τm−1
τ−1

where l is the length of the expansion RTNAF(n̄), ci ∈ {−1, 0, 1}, cl−1 6= 0 and
cici+1 = 0.

The detail example on �nding the TNAF and RTNAF can be refer to (Yunos
and Suberi, 2018) and (Suberi et al., 2018).

De�nition 1.4. Let N : Q(τ)→ Q the rational set as a function of norm. Let
α = r+ st an element Q(τ).The norm of α is de�ned as N(α) = r2 + trs+ 2s2

where t = (−1)(1−a) for a ∈ {0, 1}.
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De�nition 1.5. Lucas sequence is a sequence of integers that can be used in
calculation of irrational quadratic numbers. Lucas sequence, Ui and Vi are
de�ned as follows;

U0 = 0, U1 = 1 and Uκ = tUκ−1 − 2Uκ−2

for κ ≥ 2;

V0 = 2, V1 = t and Vκ = tVκ−1 − 2Vκ−2

for κ ≥ 2;

Theorem 1.1 from (Yunos et al., 2014a) shown below will be applied in the
discussion of this paper.

Theorem 1.1. If a0 = 0, b0 = 1, am = am−1 + bm−1 and bm = −2am−1, then
τm = bmt

m + amt
m+1τ for m > 0.

(Solinas, 2000) generated the formula for τm = Umτ−2Um−1 that to be is used
to �nd TNAF(n̄)mod (τm − 1). (Yunos et al., 2014a) produced Theorem 1.1
as an alternative version for the formula τm. That is, if x0 = 0, y0 = 1, xm =
xm−1 + ym−1 and ym = −2xm−1, then τm = ymt

m + xmt
m+1τ for m > 0.

As a result, the process to convert the expansion of TNAF
(∑l−1

m=0 cmτ
m
)
into

an element of Z(τ) became easier. Both τm formulas that were produced by
(Solinas, 2000) and (Yunos et al., 2014a) can be used to calculate the number
of points on the curve Ea. The formulas are as follows ;

#Ea(F2m) = p ·#Ea(F2)

where p > 2 is a prime ,

#Ea(F2m) = 2m + 1− Vm,
#Ea(F2m) = N(τm − 1), (1)

#Ea(F2m) = #Ea(F2m) ·N
(τm − 1

τ − 1

)
where |P | = N

(τm − 1

τ − 1

)
,

#Ea(F2m) = b2m + 2a2m + ambm + 1

−(2bm + am)tm.

Formula N(
∑l−1
m=0 cmτ

m) = r2 + trs + 2s2 where r =
∑l−1
m=0 cmbmt

m and

s =
∑l−1
m=0 cmamt

m+1 was applied by (Ali and Yunos, 2016) to �nd maximum
and minimum norms.
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In this paper, our approach is to introduce aim for 2 ≤ i ≤ m+1
2 . Subsequently,

alternative formula for τm is proposed. As a result, by using the new τm, we
�nd the number of points that passes through the curve Ea.

In the next section, we introduced alternative form of τm by proving the Propo-
sitions 2.1 and 2.2 hence provide alternative version di�er from τm that was
introduced by (Solinas, 2000) and (Yunos et al., 2014a).

2. Alternative formula for τm

We begin with the identity of τ2 = tτ − 2. We expand τ for m ∈ Z+ in
form of rm + smτ . For example, for m = 1 and m = 2, we obtain τ1 = 0 + 1τ
and τ2 = −2 + tτ respectively. We input the data onto Table 1 for value of
rm and sm for m ∈ {1, 2, 3, . . . , 12} using the method of expansion of τ identity.

Table 1: All rm and sm of τm
for 1 ≤ m ≤ 12

m rm sm
1 0 1
2 −2 t
3 −2t t2 − 2
4 −2t2 + 4 t3 − 4t
5 −2t3 + 8t t4 − 6t2 + 4
6 −2t4 + 12t2 − 8 t5 − 8t3 + 12t
7 −2t5 + 16t3 − 24t t6 − 10t4 + 24t2 − 8
8 −2t6 + 20t4 − 48t2 + 16 t7 − 12t5 + 40t3 − 32t
9 −2t7 + 24t5 − 80t3 + 64t t8 − 14t6 + 60t4 − 80t2 + 16
10 −2t8 + 28t6 − 120t4 + 160t2 − 32 t9 − 16t7 + 84t5 − 160t3 + 80t
11 −2t9 + 32t7 − 168t5 + 320t3 − 160t t10 − 18t8 + 112t6 − 280t4 + 240t2

−32
12 −2t10 + 36t8 − 224t6 + 560t4 − 480t2 t11 − 20t9 + 144t7 − 448t5 + 560t3

+64 −192t

De�nition 2.1 was introduced through this table.

De�nition 2.1.

Given τm = rm + smτ is an element of Z(τ) for any positive integer m. Let
a1m = 1. We de�ne aim is the coe�cient in sm expansion for i ∈ {1, ..., bm−12 c}.

Next, we start with the generation of Table 2. By using De�nition 2.1 and
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Table 1, we disintegrate the sm of τm for 1 ≤ m ≤ 12 as given in the following
table.

Table 2: sm of τm
for 1 ≤ m ≤ 12

sm =
∑m
i=1 aimt

m−2i+1

m
a1mt

m−1 a2mt
m−3 a3mt

m−5 a4mt
m−7 a5mt

m−9 a6mt
m−11

1 1
2 1
3 1 −2
4 1 −4t
5 1 −6t2 4
6 1 −8t3 12t
7 1 −10t4 24t2 −8
8 1 −12t5 40t3 −32t
9 1 −14t6 60t4 −80t2 16
10 1 −16t7 84t5 −160t3 80t
11 1 −18t8 112t6 −280t4 240t2 −32
12 1 −20t9 144t7 −448t5 560t3 −192t

From Table 2, we can observed the pattern of a2m for 1 ≤ m ≤ 12 to obtain
the general form of sm. We found that the sequence of
{a2m}m=12

m=3 = {−2,−4,−6,−8,−10,−12,−14,−16,−18,−20} can be written
in the form of {(−1)2−1 2

(2−1)! (3−2) , (−1)2−1 2
(2−1)! (4−2),

(−1)2−1 2
(2−1)! ( 5 − 2 ), . . . , ( −1 )2−1 2

(2−1)! ( 12 − 2)} that is

a2m = (−1)2−1 2
(2−1)!

∏2(2)−2
j=2 (m − j). We obtained the following conjecture

from this pattern.

Conjecture 2.1. Sequence {a2m}m=∞
m=3 = {−2,−4,−6,−8,−10, . . .} has a gen-

eral formula of a2m = a2m−1 − 2.

Followed by the following result for the purpose to proof argument in Lemma
2.2.

Lemma 2.1. If a2m = a2m−1 − 2, then the coe�cient

a2m = −2(m− 2)

for any integer m ≥ 3.

Proof. The proof of this lemma can be found in Hadani and Yunos (2018).
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Now, we observe the sequence of {a3m}m=12
m=3 = {4, 12, 24, 40, 60, 84, 112, 144}.

We identi�ed that this sequence can be written in the form of {(−1)3−1 23−1

(3−1)! (5−
3) (5−4) , (−1)3−1 23−1

(3−1)! (6−3) (6−4) , (−1)3−1 23−1

(3−1)! (7−3)(7−4), . . . ,

(−1)3−1 23−1

(3−1)! (12 − 3)(12 − 4)} that is a3m = (−1)3−1 23−1

(3−1)!
∏2(3)−2
j=3 (m − j).

From the pattern of the sequence that we obtained, we can conclude the general
form of aim as in the following Lemma.

Lemma 2.2. If a1m = 1 then coe�cient in sm expansion is

aim = (−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(m− j)

for 2 ≤ i ≤ m+1
2 and m ≥ 2i− 1.

Proof.

We prove by using mathematical induction as follows.
For i = 2, then

a2m = −2(m− 2) from Lemma 2.1

= (−1)2−1
22−1

(2− 1)!

2(2)−2∏
j=2

(m− j) is true.

Assume that i = k, then akm = (−1)k−1 2k−1

(k−1)!
∏2k−2
j=k (m − j) is true for 2 ≤

k ≤ m+1
2 .
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Now, let i = k + 1,

ak+1m = akm

(
(−1)

2

k

(m− 2k + 1)(m− 2k)

m− k

)
=

(
(−1)k−1

2k−1

(k − 1)!

2k−2∏
j=k

(m− j)
)

(
(−1)

2

k

(m− 2k + 1)(m− 2k)

m− k

)
=

(
(−1)k−1

2k−1

(k − 1)!
(m− k)(m− (k + 1))

(m− (k + 2)) · · · (m− (2k − 2))
)

(
(−1)

2

k

(m− 2k + 1)(m− 2k)

m− k

)
=

(
(−1)k+1−1) 2k+1−1

(k + 1− 1)!

(
(m− (k + 1))

(m− (k + 2)) · · · (m− (2k − 2)) ·
(m− (2k − 1))(m− (2(k + 1)− 2))

)

= (−1)k+1−1 2k+1−1

(k + 1− 1)!

2(k+1)−2∏
j=k+1

(m− j)

Subsequently it is true for all integers i ∈ N.�

Below is the propositions of sm and rm from τm = rm + smτ which used
Lemma 2.2 to assist the proving of the proposition. These propositions will
bring out another version for the expansion of τm.

Proposition 2.1.

Given τm = rm + smτ is an element of Z(τ) for any positive integer m. Let
s1 = 1 and s2 = t. If aim from Lemma 2.2, then the coe�cient sm can be
written as

sm =

bm+1
2 c∑
i=1

aimt
m−2i+1 (2)

where a1m = 1 and m ≥ 3.
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Proof. By mathematical induction we have the following
If m = 3, then from Table 2, we obtain

s3 = t2 − st

= 1t2 + (−1)2−1
22−1

(2− 1)!
(3− 2)t2

= 1t2 + (−1)2−1
22−1

(2− 1)!

2(2)−2∏
j=2

(3− j)t2

= a13t
2 + a23t

= a13t
3−2(1)+1 + a23t

3−2(2)+1

=

b 3+1
2 c∑
i=1

ai3t
3−2i+1.

The hypothesis (2) is true for m = 3.
Assume that if m = k, then

sk =

b k+1
2 c∑
i=1

aikt
k−2i+1 where a1k = 1 and k ≥ 3 is true.

Now, if m = k + 1, we can separate the proof into two di�erent cases. That is
for k is an odd number (O) and k is an even number (E) as follows.
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For k ∈ O,

sk+1 = t

b k+1
2 c∑
i=1

aik
k + 1− i
k − 2i+ 2

tk−2i+1

= t

(
a1kt

k−1 + a2k
k − 1

k − 2
tk−3 + a3k

k − 2

k − 4
tk−5 + · · ·+

ab k+1
2 ck

k + 1− bk+1
2 c

k − 2bk+1
2 c+ 2

tk−2b
k+1
2 c+1

)

= a1kt
k + a2k

k − 1

k − 2
tk−2 + a3k

k − 2

k − 4
tk−4 + · · ·+

ab k+1
2 ck

k + 1− bk+1
2 c

k − 2bk+1
2 c+ 2

tk−2b
k+1
2 c+2

By using aik from Lemma 2.2 and since bk + 1

2
c = bk + 2

2
c

when k ∈ O, we have the following.

sk+1 = 1tk + (−1)2−1
22−1

(2− 1)!
XXXX(k − 2)

(k − 1
XXXk − 2

)
tk−2 +

(−1)3−1
23−1

(3− 1)!
(k − 3)XXXX(k − 4)

(k − 2
XXXk − 4

)
tk−5 + · · ·+

(−1)b
k+1
2 c−1

2b
k+1
2 c−1

(bk+1
2 c − 1)!

(k − bk + 1

2
c)(k − bk + 1

2
c − 1) · · · (k − 2bk + 2

2
c+ 3)

(
XXXXXXXX
k − 2bk + 2

2
c+ 2)

( k + 1− bk+1
2 c

XXXXXXk − 2(bk+2
2 c+ 2

)
tk+2−2b k+1

2 c,

= 1tk−2(1)+2 + (−1)2−1
22−1

(2− 1)!
(k + 1− 2)tk−2(2)+2 +

(−1)3−1
23−1

(3− 1)!
(k + 1− 3)(k + 1− 4)tk−2(3)+2 + · · ·+

(−1)b
k+1+1

2 c−1 2b
k+1+1

2 c−1

(bk+1+1
2 c − 1)!

(k + 1− bk + 1 + 1

2
c)(k − bk + 1 + 1

2
c)

(k − bk + 1 + 1

2
c − 1) · · · (k + 1− 2(bk + 1 + 1

2
)c+ 2)tk−2b

k+1+1
2 c+2
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= a1k+1
tk+1−1 + a2k+1

tk+1−3 + a3k+1
tk+1−5 + · · ·+

ab k+1+1
2 ck+1

tk+1−2(b k+1+1
2 c)+1

=

b k+1+1
2 c∑
i=1

aik+1
tk+1−2i+1

Therefore, the hypothesis (2) is also true for m = k + 1 where k is an odd
number.
Now, we consider if k is even. That is, for k ∈ E,

sk+1 = t

b k+1
2 c∑
i=1

aik
k + 1− i
k − 2i+ 2

tk−2i+1 + ab k+2
2 ck+1

tk−2b
k+2
2 c+2

=

(
a1kt

k + a2k
k − 1

k − 2
tk−2 + a3k

k − 2

k − 4
tk−4 + · · ·+

ab k+1
2 ck

k + 1− bk+1
2 c

k − 2bk+1
2 c+ 2

tk−2b
k+1
2 c+2

)
+ ab k+2

2 ck+1
tk−2b

k+2
2 c+2

By using aik from Lemma 2.2, we have the following

=

(
1tk + (−1)2−1

22−1

(2− 1)!
XXXX(k − 2)

(k − 1
XXXk − 2

)
tk−2 +

(−1)3−1
23−1

(3− 1)!
(k − 3)XXXX(k − 4)

(k − 2
XXXk − 4

)
tk−5 + · · ·+

(−1)b
k+1
2 c−1

2b
k+1
2 c−1

(bk+1
2 c − 1)!

(k − bk + 1

2
c)(k − bk + 1

2
c − 1) · · ·

(
XXXXXXXX
k − 2bk + 2

2
c+ 2)

( k + 1− bk+1
2 c

XXXXXXk − 2(bk+2
2 c+ 2

)
tk+2−2b k+1

2 c

)

+(−1)b
k+2
2 c−1

2b
k+2
2 c−1

(bk+2
2 c − 1)!

(k + 1− bk + 2

2
c)(k − bk + 1

2
c) · · ·

(k − 2bk + 2

2
c+ 2)
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= 1tk + (−1)2−1
22−1

(2− 1)!
(k − 1)tk−2 + (−1)3−1

23−1

(3− 1)!
(k − 2)(k − 3)tk−5

+ · · ·+ (−1)b
k+1
2 c−1

2b
k+1
2 c−1

(bk+1
2 c − 1)!

(k + 1− bk + 1

2
c)(k − bk + 1

2
c)

(k − bk + 1

2
c − 1) · · · (k + 1− 2(bk + 1

2
)c)tk+2−2b k+1

2 c

+(−1)b
k+2
2 c−1

2b
k+2
2 c−1

(bk+2
2 c − 1)!

(k + 1− bk + 2

2
c)(k − bk + 1

2
c) · · ·

(k − 2bk + 2

2
c+ 2)

= 1tk−2(1)+2 + (−1)2−1
22−1

(2− 1)!
(k + 1− 2)tk−2(2)+2 +

(−1)3−1
23−1

(3− 1)!
(k + 1− 3)(k + 1− 4)tk−2(3)+2 + · · ·+

(−1)b
k+1+1

2 c−1 2b
k+1+1

2 c−1

(bk+1+1
2 c − 1)!

(k + 1− bk + 1 + 1

2
c)(k − bk + 1 + 1

2
c)

(k − bk + 1 + 1

2
c − 1) · · · (k + 1− 2(bk + 1 + 1

2
)c+ 2)tk−2b

k+1+1
2 c+2

= a1k+1
tk+1−1 + a2k+1

tk+1−3 + a3k+1
tk+1−5 + · · ·+

ab k+1+1
2 ck+1

tk+1−2b k+1+1
2 c+1

=

b k+1+1
2 c∑
i=1

aik+1
tk+1−2i+1.

Proposition 2.1 is important as it will aid the proving of next proposition
for rm in τm = rm + smt.

Next, we will show the proving of proposition for rm given τm = rm + smτ .

Proposition 2.2.

If sm from Proposition 2.1, then the coe�cient rm can be written as

rm = −2sm−1 (3)

where a1m = 1 and m ≥ 3.
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Proof. By mathematical induction we have the following.
If m = 3, then from Table 2, we obtain

r3 = −2t

= −2a12t

= −2s2.

The hypothesis (3) is true for m = 3.
Assume that if m = k, then

rk = −2sk−1 is true for k − 2i+ 1 ≤ 0

= −2

b k2 c∑
i=1

aik−1
tk−2i

is true for k ≥ 3.
Now, if m = k + 1, we can separate the proof into two di�erent cases. That is
for k is an even number (E) and k is an odd number (O) as follows.
For k ∈ E,

rk+1 = −2t

b k2 c∑
i=1

aik−1

k − i
k − 2i+ 1

tk−2i

= −2t

(
a1k−1

tk−2(1) + a2k−1

k − 2

k − 2(2) + 1
tk−2(2) +

a3k−1

k − 3

k − 2(3) + 1
tk−2(3) + · · ·+ ab k2 ck−1

k − bk2 c
k − 2bk2 c+ 1

tk−2b
k
2 c

)

By using aik from Lemma 2.2 and since bk
2
c = bk + 1

2
c

when k ∈ E, we have the following.

rk+1 = −2

(
1tk−1 + (−1)2−1

22−1

(2− 1)!
(k − 2)tk−3 +

(−1)3−1
23−1

(3− 1)!
(k − 3)(k − 1− 3)tk−5 + · · ·+

(−1)b
k+1
2 c−1

2b
k+1
2 c−1

(bk+1
2 c − 1)!

(k − bk + 1

2
c)(k − 1− bk + 1

2
c)(k − 2− bk + 1

2
c) · · ·

(k − 2bk + 1

2
c)tk−2b

k+1
2 c+1

)
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= −2

(
a1kt

k−1 + a2kt
k−3 + a3kt

k−5 + · · ·+ ab k+1
2 ck

tk+1−2b k+1
2 c

)

= −2

b k+1
2 c∑
i=1

aik+1−1
tk+1−2i

= −2sk+1−1.

Therefore, the hypothesis (3) is also true for m = k + 1 where k is an even
number.

Now, we consider if k is odd. That is, for k ∈ O,

rk+1 = −2

(
t

b k2 c∑
i=1

aik−1

k − i
k − 2i+ 1

tk−2i + ab k+1
2 ck

tk+1−2b k+1
2 c

)

= −2

(
1tk−1 + (−1)2−1

22−1

(2− 1)!
(k − 2)tk−3 +

(−1)3−1
23−1

(3− 1)!
(k − 3)(k − 1− 3)tk−5 + · · ·+

(−1)b
k
2 c−1

2b
k
2 c−1

(bk2 c − 1)!
(k − bk

2
c)(k − 1− bk

2
c)(k − 2− bk

2
c) · · ·

(k − 2bk
2
c)tk−2b k2 c+1 + (−1)b

k+1
2 c−1

2b
k+1
2 c−1

(bk+1
2 c − 1)!

·

(k − bk + 1

2
c)(k − 1− bk + 1

2
c) · · ·

(k − 2bk + 1

2
c)tk−2b

k+1
2 c+1

)

= −2

(
a1kt

k−1 + a2kt
k−3 + a3kt

k−5 + · · ·+

ab k2 ck
tk−2b

k
2 c+1 + ab k+1

2 ck
tk−2b

k+1
2 c+1

)

= −2

b k+1
2 c∑
i=1

aik+1−1
tk+1−2i

= −2sk+1−1
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Proved Propositions 2.1 and 2.2 therefore resulted in the introduction of
Theorem 2.1 as a new version for the expansion of τm.

Theorem 2.1. Let a1m = 1, then

τm = −2

(
tm−2 +

bm2 c∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(m− 1− j)tm−2i
)

+

(
tm−1 +

bm+1
2 c∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(m− j)tm−2i+1

)
τ

Proof. We have

τm = rm + smτ

= −2sm−1 + smτ from Proposition 2.2

= −2

bm2 c∑
i=1

aim−1
tm−2i +

bm+1
2 c∑
i=1

aimt
m−2i+1 from Proposition 2.1

= −2

(
tm−2 +

bm2 c∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(m− 1− j)tm−2i
)

+

(
tm−1 +

bm+1
2 c∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(m− j)tm−2i+1

)
τ from Lemma 2.2

Below is the example to illustrate this version.
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Example 2.1. Consider m = 3 and let a1m = 1, then

τ3 = −2

(
t1 +

b 22 c∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(2− j)t3−2i
)

+

(
t2 +

b 3+1
2 c∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(3− j)t4−2i
)
τ

= −2t+
(
t2 − 2

2∏
j=2

(3− j)
)
τ

= −2t+ (t2 − 2)τ.

By introducing Theorem 2.1 as a new properties for τm, hence we can calculate
the number of points using alternative method as follows ;

From 1 we have

#Ea(F2m) = N(τm − 1)

= N(rm + smτ − 1) by letting τm = rm + smτ

By Proposition 2.2, we obtain,

#Ea(F2m) = N((−2sm−1) + smτ − 1)

= (2sm−1 + 1)2 − t(2sm−1 + 1)sm + 2sm
2

from De�nition 1.4

=
(

2

m−1∑
i=1

aim−1t
m−2i + 1

)2
− t
(

2

m−1∑
i=1

aim−1t
m−2i + 1

)
( m∑
i=1

aimt
m−2i+1

)
+ 2
( m∑
i=1

aimt
m−2i+1

)2
by Proposition 2.1

=

(
2
(m−1∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(m− 1− j)tm−2i
)

+ 1

)2

−t

(
2
(m−1∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(m− 1− j)tm−2i
)

+ 1

)
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m∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(m− j)tm−2i+1

)
+

2

(
m∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(m− j)tm−2i+1

)2

from Lemma 2.2 (4)

Example shown below is the illustration for #Ea(F2m).

Example 2.2. Consider a �eld F23 with an elliptic curve

E1 : y2 + xy = x3 + x2 + 1,

since the coe�cient a = 1 is selected.
Now we can calculate the number of points that passes through this curve using
formula 4 .

#Ea(F23) =

(
2
( 2∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(2− j)
)

+ 1

)2

−

(
2
( 2∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(2− j)
)

+ 1

)
(

3∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(3− j)

)
+

2

(
3∑
i=1

(−1)i−1
2i−1

(i− 1)!

2i−2∏
j=i

(3− j)

)2

= 14

The points are ( (100, 011), (101, 000), (110, 011), (011, 000), (001, 101),
(111, 111), (000, 001), (111, 000), (010, 111), (011, 011), (110, 101), (101, 101),
(100, 111) ) and ∞. Refer to (Yunos and Atan, 2016) on how to �nd these
points.

3. Conclusion

As a conclusion, we propose new method to discover the number of points
through the curve Ea i.e using τm = rm + smτ for

sm =
∑m
i=1(−1)i−1 2i−1

(i−1)!
∏2i−2
j=i (m− j)tm−2i+1.
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